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ABSTRACT

A geueralized theory of acoustic emission (AE) is developed on the basis of
the theory of elastodynamics and dislocation models. Acoustic emission sources
are represented as dislocation sources and include both discontinuities of
displacement components and tractions. As AE waves are observed at a stress free
surface, Green's functions in a half space are obtained. Fortran programs for
computing these functions for non-Cauchy solids are used to calculate AE
waveforms from a point crack and moving cracks. Their implication on current
attempts of determining source characteristics via deconvolution is discussed.

INTRODUCTION

Detailed analysis of acoustic emission (AE) waveforms has been difficult,
because of the high frequency range of AE signals. Quantitative evaluation of AE
signals as well as theoretical attempts to predict AE originating from sources
with prescribed characteristics have been made. The theory of AE still faces
difficult problems, the most serious of which is the absence of Green's functions
for relevant geometries.

The theory of AE must be able to specify the nature of a source starting
from a given displacement (or velocity) history at a defined point of
observation. Earlier, theories of dislocations and elastodynamics were applied
to simple analysis of AE generation /1-3/, but only in an infinite medium. For

- any AE analysis, this is unsatisfactory as a stress-free surface must exist where
emissions are detected. AE in a half space (in a semi-infinite body) is a good
representation of special experiments /4.5/. Pekeris /6/ obtained an analytical
solution of Green's function in a half space for a Cauchy solid (Poisson's ratio

= 0.25). Methods of generalized ray, normal modes and integral transforms have
been used to obtain a limited number of solutions for a plate /7-9/. In most of
these calculations, an AE source was represented by a force impulse or force
couple. While this representation is appropriate in calibration experiments that
utilize a force step, the characterization of most AE sources requires
displacement steps. In an infinite medium, the spatial derivatives of Green's
functions are used in conjunction with displacement functions. However, the
presence of a stress-free surface makes this practice untenable. The spatial
derivatives of Green's functions in a half space or of a plate cannot be given in

I  an analytic form and require elaborate procedures ev- in numerical computations.

In the present paper, we summarize a generalized theory of AE /10,11/ for
the representation of source characteristics. It is based on the integral
formulation of elastodynamics and the dislocation theory. We have employed
Fortran programs for the calculation of Green's functions in a half space for a
surface pulse and for a buried pulse. These computer programs can also compute
Green's functions of the second kind, which are suitable for the applications to
AE waveform s4- lation. Several dynamic cases are considered.
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GENERALIZED THEORY Of A

We present a generalized theory of AE using the integral representation of
a solution in elastodynamics /11,.121. Let D denote a domain occupied by a given
body in the three dimensional space and S denote its boundary surface. With the
assumption of linear isotropic and homogeneous elastic body, an elastodynamic
problem is to solve the following equation in D;

LLu i(z,t)] ) + ji)uJj + ILuj jj - P'i , 0, 1

where u U.0t is a displacement field at position, z, and time, t. and the comma
indicates a differentiation (u an */8xi L[ I represents a differential
operator and is used to simpliij' exprel siona,: 1 and pa are Lame constants and p is
the mass density. Since the effect of a body force usually is not dominant in
elastodynaic problems, we omit the term of a body force in equation 1.
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Fig. 1 Dislocation surface F situated
in elastic body D. surrounded

xl
by boundary S (S S2 +

Ile solution of equation 1 is subject to the initial conditions of a
quiescent past on D + S and boundary conditions on S. Boundary S consists of S~
and S2, where displacement g. is given on S Iand traction h i is given on S 21 as I

follow:11

u i(Z, t) gjR(X. t on S1I

Tlu i(z~t)J - Xuk,kni + ii(u153n, + uji) - hi(z.t) onS2

Here n is the outward normal vector on S. Note that T[ I is also used as a
differintial operator that describes a relationship between a displacement field
and a traction.

For two arbitrary displacement fields ni(x~t) and vi(z~t) in domain D, the -

reciprocity theorem of elastodynamics states

f(Lcu I(z.t)vev(zt) -L(v i(I.t)Jui (x,t))dV
D

- fT(ui(x.t)]evi(x~t) -T~vi(x~t)]Oui(x.t))dS.()

S

where 0 means a convolution integral with respect to time. Green's function 6
Is then defined assa solution of the following equation: i



LEGij(x~t~x,tI)) = - 6 (x-z")S(t-t). (3)

Setting uI as a solution of equation 1 and v to be G1 j in equation 2. we obtain
the following integral form as a solution of equation-1,

ui(x-t) - I (Gik(xlt;x"t')etk(xet') - Tik(X't;x t')*Uk(x't'))dS. (4)8

* where we define T[uk] - tk and T[Gk] = Tik. Tik indicates a traction

associated with a displacement field of Green's function Gi. and sometimes is
called Green's function of the second kind. It is expresse3 as follows:

Tij ijink GikjnJ + pGij k nj

Next, consider a domain containing a dislocation. We assume homogeneous
boundary conditions on S (g ft0 on S and hi 0 onS) and consider another
boundary F (dislocation surface) as siown in Fig. 1. is apply equation 4 to
domain D surrounding boundaries S1, 82 and F, and the following equation results:

ui(x't) I (ik Cx.t;xltl)*fk(z1t1) + TIk(x)t;x1t'le[Uk(z't'l1ldF"

Equation 3 represents any kind of dislocation sources, and provides the
generalized representation of AE source mechanisms. Generally speaking,
discontinuities of displacement and of traction exist on a dislocation surface.
However, it is likely that one or the other has a dominant effect on A.
waveforms. Therefore, equation 5 can be simplified to contain either the first
or second term in the integrand. or

0 -.

ui~x,t)) f dt' f G ik (X~x't-t1) f k (xlt)dF. (5a)

-a p
uilx,t) f dt' f Tikl;x',t-t')[uk(x",t')ldF. (5b)

Denoting the elastic constant as Cpqrs, TikC[uk] can be expressed as

T. OCu ( e u In.ikO[uk ]  Cpqrs ip'q r -

Unfortunately. G is impossible to calculate analytically unless the medium is
infinitely bounde€l; In cases of interest to AE analysis, it is therefore
imperative to use equation 5b by directly calculating T n merioally. When
surface area F can be regarded as infinitesimal compare with domain D. the

surface integral in equation S is evaluated only at a source point z' and is
equal to AP. Depending on the types of dislocations, equations 3a and 5b with
the initial conditions of a quiescent past can be simplified to the following
convolution integrals:

t0
ui(xt) AF f Gik(z, t-t)fk(x,t)dt, (6• o '(6)

0

t
u (xt) = AF f Tik(x;z,t-tI)[uk(x',t')ldt'.I. o k k (7)0
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A discontinuity of the traction component, f in equation 6 is equivalent
to a point force. Consequently, equation 6 is employed to analyze wave motions
subject to an applied force, such as the breakage of a &lass capillary and a
pencil lead. This equation is useful in the transducer calibration, but not
appropriate for the analysis of AE waveforms due to microfracturing events
(although it can be used with added difficulties). For the latter, it is -
preferable to use equation 7. Here, a discontinuity of displacement component is
directly related to the formation of a crack or any dynamic movement in a
material. By using equation 5b or 7, we can account for a moving dislocation
that represents an incremental extension of a precrack using the same method as
the fault model in the synthesis of seismograms /13/.

Considering the method of AE observation, we need solutions of equations 5
to 7 at a stress-free surface. In order to analyze AE waveforms by equations 6
and 7, we find that a solution of equation 3 is a Green's function in a half
space which can be substituted into the two equations. In real experiments, a
propagating medium is a finite body so that corresponding Green's functions
cannot be obtained easily. However, wave motions in a half space are obviously
observed before reflected waves arrive at the observation point. Thus, the
present method can provide the initial parts of AE waveforms except in very thin
plates and complex structures.

GREEN'S FUNCTIONS IN A HALF SPACe

The problem of determining the elastic disturbances resulting from a point IRV
force in a half space is known as Lamb's problems. Green's functions in a half
space are only available as numerical solutions, and these solutions cannot
readily be applied to problems of interest in AE studies. The programs for
computing Lamb's solutions were given elsewhere /11/. By using these programs,
vertical surface motions of a stress-free surface due to a step function force on -

the same surface or that due to a buried source have been calculated /11/. -

AE WAVEFOM DUE TO CRACKS

a. A Point Crack

Using the program for a buried source with revised external functions, we
computed a Green's function of the second kind, Tik. We simulated AE waveforms
using this solution and equation 7. The dislocation model chosen for this study
is the case of a tensile crack parallel to the surface, or a Mode I crack. The
unit normal ni of the dislocation surface F is identical to the x3-axis, and a
displacement of the dislocation has only a u3] component. From equation 7. the
resulting displacement is expressed, as follows:

u3(x,t) T 3 (x,t;x't)*[u 3(x',t')] = (X 31 , +.G3 2 ,2 +(0 + 20)G33,3)[u 3]. (8)

The spatial derivatives of Green's functions, such as G ! , Gjj , and G33
are computed separately, again revising external functi~&i In dec to

investigate the applicability of this method, we computed the epicenter response
Of T, which is due to a displacement discontinuity of a step function. The
result is shown in Fig. 2.

By using the following time function /14/, we simulated AE waveforms:

Results are shown in Fig. 3. The rise time v was assumed to be 750 ns. An
epicenter response (x3 - 2.4 cm) and a response at x1 - 6 mm and x 2.4 om are

calculated to examine the effect of a shift of a source or the lo otion of a



transducer. It is interesting that due to a small shift of a source or a
transducer. the amplitude of the P-wave decreases and the S-wave becomes
stronger. Other effects of varying rise time, different observation points and

source functions can be calculated by this procedure.

b. A Movina Crack

Considering sequential shifts of the dislocation surface Al in equation 7
or using equation 5b, we can introduce effects of a soving crack. This can

readily be evaluated by using equation Sb or 7, but not easily accomplished by

S-wave
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Fig..2 Green's function of the second kind T3 3 for a buried source at the
epicenter.
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(The rise tine 1. Ls. a length of the dislocation 0.2 n and 1ho
rupture vulocity.e00 i/m).ol vg

means of equation Sa or 6. The crack moves 0.2 m in the x1-direction of at a
uniform velocity of 500 m/s. This is represented by four sequential applications

of a source displacement on the crack surface at four points in the z-direotion.
The same source function as in Fig. 3 was employed and the rise time was 1 pa.
The result is shown in Fig. 4. In comparison to the displacement waveform duo to
a single crack given in Fig. 3, we can see that the presence of a moving crack
broadens the peaks of the displacement response and decreases the amplitude of
the S-wave. The comparable experimental result of Vadley and Scruby /15/ agrees
with the displacement curve for the moving crack quite well.

Source characteristics of acoustic emission have been investigated as the
inverse problems using the deconvolution analyses /15/. In these studies, Green's
functions of a point crack were used to deconvolve Al waveforms observed at

Ki certain points of observation. The effect of a moving crack can be significant
on the inverse problem and needs to be examined. As we showed in the preceding
section. the moving crack broadened the AB waveform. When a faster crack
velocity was used, the AR wavefors was closer to that of Fig. 3. Obviously, one
must use the dynamic Green's function in deconvolution analysis of any observed
AR waveforms. In the conventional deconvoluton analysis, one is forced to use
the Green's function of a stationary point crack and it is impossible to take
into account the effect of a moving crack or dislocation.

In order to investigate the extent of errors due to the dynamic nature of
cracks on the inverse problems, we performed deconvolution analyses of simulated
Al waveforms. Simulated waveforms were transformed into the frequency domain by
fast Fourier transform (Fr) and were divided by the corresponding Fourier
spectrum of Green's functions of the seceond kind for a stationary point crack.
These deconvolutod waveforms in the frequency domain were transformed into the
tine domain by inverse FT. Four examples are shown in Fig. 5. These are
donvolved souree funetions obtained from four cracks. One was a stationary
point *rask and the other three were dynamic cracks with the rupture velocities
V r of 2000 n/s. 1000 mfts. and 500 n/s. Amplitudes are normalized in those -

graph*.
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Fig..S Source time functions recovered from simulated AE wsveforms for
the moving cracks. For the cracks with the rupture velocities V
of 2000. 1000, 500 /s and a stationary crack.

The deconvolved waveforms for the stationary crack and those of two fast

rupture velocities recovered the essential features of the source function.
Nowever, gradual decreases in displacement amplitudes were observed beyond the

original rise time of I ps. This decrease we exaggerated in the case of the slow
crack with V of 500 m/s. In this case, the amplitude became strongly negative
at 3 ps. This behavior apparently arises from the summations of vaveforms from

different sources staggered in space and time. Since one has no a priori
knowledge of the source waveform, conventional deconvolution using Green's
function of a stationary source may lead to unrealistic source functions.

CONCLUSIONS

1. A generalized theory of AR is presented in this paper. Applying the
reciprocity theorem of elastodynamics to a domain containing a dislocation.
displacement fields due to two components of the AE source function are expressed
by two Integrals. One represents AE due to an applied force step. The other
represents AS due to a discontinuity of displacement components on the
dislocation surface, which corresponds to a crack or slip.

2. In order to analyze realistic conditions of Al detection, Green's
functions of the second kind in a half space are numerically calculated by
Fortran programs. Several representative cases are investigated, including a
stationary (Mode I) crack and a moving crack.

3. Simulated AR waveforms from dynamic sources can be easily obtained
using the present appriach. Displacement response from a moving crack is

calculated.

4. Commonly used methods of deconvolution of acoustic emission waveforms
can produce grossly misleading conclusions. While a point crack response can be
deconvolved successfully, the doconvolution of a moving crack responses may lead

to wrong source characteristics. More extensive analysis of the "forward"
problems should be made before attempting the "inverse" problems.
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